Search results for "histopathological images"

showing 2 items of 2 documents

Fuzzy Clustering of Histopathological Images Using Deep Learning Embeddings

2021

Metric learning is a machine learning approach that aims to learn a new distance metric by increas- ing (reducing) the similarity of examples belonging to the same (different) classes. The output of these approaches are embeddings, where the input data are mapped to improve a crisp or fuzzy classifica- tion process. The deep metric learning approaches regard metric learning, implemented by using deep neural networks. Such models have the advantage to discover very representative nonlinear embed- dings. In this work, we propose a triplet network deep metric learning approach, based on ResNet50, to find a representative embedding for the unsupervised fuzzy classification of benign and maligna…

Computer Science::Machine LearningMetric LearningSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniComputingMethodologies_PATTERNRECOGNITIONDeep LearningHistopathological Images ClassificationSettore INF/01 - InformaticaMetric Learning
researchProduct

Deep Metric Learning for Histopathological Image Classification

2022

Neural networks demonstrated to be effective in multiple classification tasks with performances that are similar to human capabilities. Notwithstanding, the viability of the application of this kind of tool in real cases passes through the possibility to interpret the provided results and let the human operator take his decision according to the information that is provided. This aspect is much more evident when the field of application is bound to people's health as for biomed-ical image classification. We propose for the classification of histopathological images a convolutional neural network that, through metric learning, learns a representation that gathers in homogeneous clusters the …

Settore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniembeddingSettore INF/01 - Informaticametric learningdeep learninghistopathological images2022 IEEE Eighth International Conference on Multimedia Big Data (BigMM)
researchProduct